Patronin Regulates the Microtubule Network by Protecting Microtubule Minus Ends

نویسندگان

  • Sarah S. Goodwin
  • Ronald D. Vale
چکیده

Tubulin assembles into microtubule polymers that have distinct plus and minus ends. Most microtubule plus ends in living cells are dynamic; the transitions between growth and shrinkage are regulated by assembly-promoting and destabilizing proteins. In contrast, minus ends are generally not dynamic, suggesting their stabilization by some unknown protein. Here, we have identified Patronin (also known as ssp4) as a protein that stabilizes microtubule minus ends in Drosophila S2 cells. In the absence of Patronin, minus ends lose subunits through the actions of the Kinesin-13 microtubule depolymerase, leading to a sparse interphase microtubule array and short, disorganized mitotic spindles. In vitro, the selective binding of purified Patronin to microtubule minus ends is sufficient to protect them against Kinesin-13-induced depolymerization. We propose that Patronin caps and stabilizes microtubule minus ends, an activity that serves a critical role in the organization of the microtubule cytoskeleton.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Patronin/Shot Cortical Foci Assemble the Noncentrosomal Microtubule Array that Specifies the Drosophila Anterior-Posterior Axis

Noncentrosomal microtubules play an important role in polarizing differentiated cells, but little is known about how these microtubules are organized. Here we identify the spectraplakin, Short stop (Shot), as the cortical anchor for noncentrosomal microtubule organizing centers (ncMTOCs) in the Drosophila oocyte. Shot interacts with the cortex through its actin-binding domain and recruits the m...

متن کامل

Microtubule Dynamics: Patronin, Protector of the Minus End

It has long been surmised that cellular microtubules are capped at the minus ends to prevent their depolymerization. A recent study provides the first definitive identification of a minus-end-specific capping protein, termed Patronin, which protects the microtubule arrays of both mitotic and interphase cells.

متن کامل

Regulation of microtubule minus-end dynamics by CAMSAPs and Patronin.

The microtubule (MT) cytoskeleton plays an essential role in mitosis, intracellular transport, cell shape, and cell migration. The assembly and disassembly of MTs, which can occur through the addition or loss of subunits at the plus- or minus-ends of the polymer, is essential for MTs to carry out their biological functions. A variety of proteins act on MT ends to regulate their dynamics, includ...

متن کامل

Microtubule Minus-End-Targeting Proteins

Microtubules are cytoskeletal filaments that are intrinsically polarized, with two structurally and functionally distinct ends, the plus end and the minus end. Over the last decade, numerous studies have shown that microtubule plus-end dynamics play an important role in many vital cellular processes and are controlled by numerous factors, such as microtubule plus-end-tracking proteins (+TIPs). ...

متن کامل

DAPK interacts with Patronin and the microtubule cytoskeleton in epidermal development and wound repair

Epidermal barrier epithelia form a first line of defense against the environment, protecting animals against infection and repairing physical damage. In C. elegans, death-associated protein kinase (DAPK-1) regulates epidermal morphogenesis, innate immunity and wound repair. Combining genetic suppressor screens and pharmacological tests, we find that DAPK-1 maintains epidermal tissue integrity t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 143  شماره 

صفحات  -

تاریخ انتشار 2010